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Abstract

Given an (extensive) game form, an equilibrium concept and a (behavior) strategy
profile, what parts of the game form are never relevant to check if the strategy profile is
(essentially) an equilibrium of a game with that game form? What is left after removing
the irrelevant parts is what we call essential. In this paper we essentialize a wide variety
of equilibrium concepts and present several applications of our analysis.

What do we mean by “essentialize”?

In this paper we present a framework that allows to identify parts of a game that may be
dispensed with to check whether a certain outcome is an equilibrium outcome or not.

Many different equilibrium concepts have been studied in the game theoretical literature;
van Damme (1991) provides an introduction to this field. In this paper we analyze whether
the most important ones can be essentialized. Given a game, most equilibrium concepts select
those strategy profiles that satisfy a certain condition in the whole game tree. However, if we
want to study a specific strategy profile, there are many branches of the game tree that are
irrelevant. Informally, to essentialize an equilibrium concept is to find, for each strategy profile,
the regions of the game tree that are needed to check whether the profile (essentially) satisfies
the requirements of the equilibrium concept.

More specifically, consider an equilibrium concept for extensive games, for instance, sub-
game perfect equilibrium, hereafter SPE. Quite generally, to know whether a strategy profile
is a SPE of a given game, there are payoffs to which we do not need to look at: for the game G
and strategy profile b in the left part of Figure 1, the payoff (2, 2) is irrelevant to check if b is a
SPE of G or not (it can never be reached after unilateral deviations). More generally, consider
the game G′ in the right part of Figure 1. That is, the payoff (2, 2) in G has been replaced with
a matching pennies game. In this case, to check if b′ is a SPE, the behavior in the subgame
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matters. Indeed, b′ is not a SPE of G′ because it is not a Nash equilibrium of the matching
pennies subgame. Yet, we can ask the following question: is the outcome of b′ a SPE outcome?
or, equivalently, is any SPE of G′ realization equivalent to b′? To answer this question, the
payoffs and also the behavior in the matching pennies game are completely irrelevant (because
this subgame cannot be reached via unilateral deviations from b′). Throughout this paper, we
think of a game (G) as a game form (Γ) together with a payoff function. Then, for every game
whose game form coincides with that of G′, the payoffs and behavior in the proper subgame
of the game are irrelevant to know if the outcome of b′ is a SPE outcome.
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Figure 1: Games G and G′ and strategies b and b′ (in gray).

The above discussion suggests that we may confirm that the outcome of a given strategy
profile is an equilibrium outcome without taking into account all the parts of the game tree,
i.e., there is some information about the game that can be disregarded and still be in good
shape to certify that the outcome at hand is an equilibrium outcome. Thus, identifying these
“irrelevant” parts of the tree might be useful. With this motivation in mind, we devote this
paper to study the following problem:

“Given an equilibrium concept EC, an (extensive) game form Γ, and a (behavior)
strategy profile b, identify W , a minimal collection of information sets of Γ, with
the following property:
If a game G has game form Γ and b is an equilibrium of G, then, whatever changes
are made in the payoffs and strategies outside W , the outcome of b will be an
equilibrium outcome in the resulting game.”

Games in Figure 1 suggest that not being in W , i.e., being irrelevant, is related to the fact
of not being reachable through (sequences of) unilateral deviations. Even though this is the
case, it is hard to find an appropriate mathematical formulation of the above problem that
is operative for all equilibrium concepts. Under our approach, given an equilibrium concept,
a game form, and a strategy profile, there is a unique minimal collection of information sets
satisfying the above property. We refer to it as the essential collection for EC, Γ, and b. Then,
we characterize the essential collections that arise from different equilibrium concepts.

We consider that the main contribution of this paper is to provide a definition of essential
collection that is useful in the various ways we describe below.
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A first application of our results runs as follows. Given an equilibrium concept, a game,
and strategy profile b, we provide a reduced game such that, if the reduced version of b is
an equilibrium of the reduced game, then the outcome of b is an equilibrium outcome in the
original game. Since the reduced game might be notably smaller than the original game, the
above verification might be much easier. Indeed, a very similar approach to that underlying the
reduced game notion has already been used for SPE in Osborne (1993) in a model of political
competition. Section 2, we use Osborne’s model to illustrate the different implications and
applications of our results.

The results obtained for the reduced game also allow to get a better understanding of the
structural robustness of the different equilibrium concepts. More precisely, we can compare
how robust each equilibrium concept is to modifications in the game such as changes in the sets
of strategies, in the players of the game, in the information available to the players, and also
in the payoffs; this kind of robustness checks have already been made in Kalai (2005, 2006) for
Nash equilibrium in the so called large games. Moreover, we show that, even in situations in
which the underlying game is only partially-specified, we can sometimes know whether a given
outcome is an equilibrium outcome of any game fulfilling the partial specifications we have.

The other main application of our analysis is what we call virtual equilibrium concepts.
For each equilibrium concept we define its virtual version by dropping the restrictions on
the behavior in the “irrelevant” parts of the game tree. We show that, given an equilibrium
concept, as far as the original game has some equilibrium, the sets of equilibrium outcomes
and virtual equilibrium outcomes coincide. Yet, there can be games in which the set of virtual
equilibria is nonempty whereas there is no non-virtual equilibrium; the virtual equilibria being
still sensible in the spirit of its non-virtual counterpart. A similar approach to that of virtual
equilibria has been independently taken in Groenert (2007), where the author introduces the
idea of trimmed equilibrium and applies it to subgame perfect equilibrium and weak perfect
Bayesian equilibrium; nonetheless, our approach is more general since it allows to define virtual
versions of a wide variety of equilibrium concepts and, moreover, virtual equilibria are just an
application of our main contribution: the essential collections. In Garćıa-Jurado and González-
Dı́az (2006), the authors use the virtual version of subgame perfect equilibrium to get a folk
theorem for a class of repeated games in which the existence of subgame perfect equilibria is
not guaranteed. Also, the equilibrium notion used in Osborne (1993) is very close to the virtual
version of subgame perfect equilibrium.

To some extent, the main contribution of this paper is to provide the framework to develop
for many equilibrium concepts the kind of analysis partially developed for SPE in Osborne
(1993) and Garćıa-Jurado and González-Dı́az (2006).

The paper is structured as follows. In Section 1 we introduce the basic notations and also
define the main concepts to be analyzed. In Section 2 we present an overview of the main
results of the paper and build upon the model in Osborne (1993) to illustrate some of their
implications and applications. In Sections 3 and 4 we characterize the essential collections for a
wide variety of solution concepts, including the most widely used ones. In Section 5 we present
some applications of our analysis.
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1 Formal definitions

1.1 Basic notations

We develop our analysis for finite extensive games with perfect recall.We follow the represen-
tation of an extensive game given in Fudenberg and Tirole (1991a).1 We denote an (extensive)
game form by Γ and it is characterized by i) a finite game tree with root r(Γ), ii) a finite set
of players N = {1, . . . , n}, iii) the sets of nodes, terminal nodes, and information sets of Γ,
denoted by X(Γ), Z(Γ), and U(Γ), respectively, and iv) the probabilities of nature choices, if
any. Under this representation, nature only moves at r(Γ) (once and for all). As in Fudenberg
and Tirole (1991a), we think of U(Γ) as a partition of X(Γ), i.e., each terminal node is also
an information set. We refer to the subsets of U(Γ) as collections (of information sets). Also,
we use Ui(Γ) to denote the information sets belonging to a player i ∈ N .

A game (in extensive form) is a pair G = (Γ, h) where Γ is a game form and h : Z(Γ) → R
n

is the payoff function, i.e., h(z) = (h1(z), . . . , hn(z)), where hi(z) denotes the payoff received
by i if z is realized. We denote by G(Γ) the set of games with game form Γ. Given a game
G (or a game form Γ), B(Γ) =

∏n
i=1 Bi(Γ) denotes the set of behavior strategy profiles. Given

b ∈ B(Γ), we slightly abuse notation and use hi(b) to denote the (expected) payoff to player i
when b is played. Given G ∈ G(Γ), let MG := maxi∈N,z∈Z(Γ)|hi(z)| + 1.

Let Γ be a game form. Let i ∈ N and let b, b̄ ∈ B(Γ). We say that b and b̄ are realization
equivalent if all the nodes of Γ are reached with the same probabilities under b and b̄. Given b ∈
B(Γ), π(b), denotes the collection of information sets that are reached with positive probability
when b is played, i.e., π(b) can be seen as the union of all paths of play that might be realized
when b is played. Hence, we slightly abuse language and refer to π(b) itself as the path of b.

The node x is a predecessor of node y, denoted by x ≺ y, if x 6= y and x is in the path from
the root to y; x � y means that either x ≺ y or x = y. If x � y, then the path of nodes from
x to y is the sequence formed by x, y, and the nodes in between x and y. Similarly, u ∈ U(Γ)
is a predecessor of v ∈ U(Γ), denoted by u ≺ v, if u 6= v and there are x ∈ u and y ∈ v such
that x ≺ y; u � v means that either u ≺ v or u = v.2 If x � y, then the path of information
sets from x to y is the sequence formed by ux, uy, and the information sets containing nodes
in between x and y. Whenever we represent a path of nodes or information sets as a sequence
{x1, . . . , xk} it is implicitly assumed that x1 ≺ x2 ≺ . . . ≺ xk. Also, given x ∈ X(Γ) and
u ∈ U(Γ), x ≺ u and u ≺ x are defined in the obvious manner.

Given a collection W ⊂ U(Γ), we say that W is closed (under �) if, for each v ∈ W
and each u ∈ U(Γ), u ≺ v implies that u ∈ W . The smallest closed collection containing a
collection W is denoted by 〈W 〉.3 Given a collection W ⊂ U(Γ), we say that W is terminal if,
for each u ∈ W and each x ∈ u, there is z ∈ W ∩ Z(Γ) such that x � z. Arbitrary unions and
intersections of closed collections lead to closed collections; also, arbitrary unions of terminal
collections lead to terminal collections.

1This representation is equivalent to the classic one given by Kuhn (1953) and further developed in Selten
(1975) and Kreps and Wilson (1982).

2Note that it is possible to have both u ≺ v and v ≺ u.
3More formally, let ρ : U(Γ) → 2U(Γ) be the operation defined by ρ(v) := {u ∈ U(Γ) : u � v}. A set

W ⊂ U(Γ) is closed under ρ if, for each v ∈ W , ρ(v) ⊂ W . Now, 〈W 〉 denotes the closure of W under the
operation ρ, i.e., the smallest closed subset of U(Γ) containing W . Then, W is closed under � if 〈W 〉 = W .
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Lemma 1. Let Γ be a game form. Let W and W̄ be two collections in U(Γ) closed under �.
If W̄ is terminal and W̄\W 6= ∅, then (W̄ \W ) ∩ Z(Γ) 6= ∅.

Proof. Let u ∈ W̄\W . Since W̄ is terminal, there is z ∈ W̄ ∩Z(Γ) such that u � z. Now, since
W is closed under �, u /∈ W , and u � z, we have that z /∈ W .

Given b ∈ B(Γ) and W ⊂ U(Γ), bW denotes the restriction of b to the information sets in
W ; similarly, b−W denotes the restriction of b to the information sets outside W . Take a pair of
games G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) and a collection W ⊂ U(Γ). The W -combination of G and
Ḡ is defined by G⊗W Ḡ := (Γ, h⊗W h̄), where h⊗W h̄ coincides with h in W ∩Z(Γ) and with h̄
in Z(Γ)\W . Thus, ⊗W is not commutative. Similarly, given b, b̄ ∈ B(Γ), b⊗W b̄ := (bW , b̄−W ),
i.e., the profile that consists of playing according to b in W and to b̄ anywhere else. For the
sake of notation, when no confusion arises, we use the abbreviated notations G⊗, h⊗, and b⊗.

The equilibrium concepts we explicitly discuss in this paper are sequential rationality (SR),
Nash equilibrium (NE), subgame perfect equilibrium (SPE), weak perfect Bayesian equilib-
rium (WPBE), sequential equilibrium (SE), and perfect equilibrium (PE). Also, in Section 4
we present an analysis that carries out for a family of equilibrium concepts that range from
sequential rationality to several versions of perfect Bayesian equilibrium. Since every finite
extensive game has a perfect equilibrium in behavior strategies, existence is ensured for all the
equilibrium concepts we discuss. Interestingly, in Section 5 we discuss a direct application of
our analysis to situations in which existence is not guaranteed (restriction to pure strategies,
infinite sets of strategies,. . . ).

1.2 Essential collections

Definition 1. Fix an equilibrium concept EC. Let Γ be a game form and b ∈ B(Γ). A
collection W ⊂ U(Γ) is sufficient for EC, Γ, and b if it has the following properties:

i) π(b) ⊂ W , i.e., W contains the path of b.

ii) Let G, Ḡ ∈ G(Γ) be such that b ∈ EC(G) and EC(Ḡ) 6= ∅. Then, there is b̂ ∈ EC(G⊗W Ḡ)

such that b and b̂ coincide in W .

Note that i) and ii) together imply that b and b̂ are realization equivalent. In words, the
idea is the following: take a collection W that is sufficient (for EC, Γ, and b) and take G ∈ G(Γ)
for which b is an equilibrium. Now, if we change the payoffs outside W , provided that this new
game has some equilibrium, then there will be one that is realization equivalent to b.

Consider again the game G′ introduced during the motivation (Figure 1), with SPE as
the equilibrium concept. In this case, regardless of the payoffs we put instead of those of
the matching pennies subgame, there will always be a SPE of the game that is realization
equivalent to b′. As we will see below, this is because the collection that is left after removing
the matching pennies subgame is sufficient for SPE, Γ, and b′. Indeed, if we let W be the
above collection, to answer the question “does any equilibrium of G′ coincide with b′ in W?”
the behavior outside W does not matter. If the answer is positive then, regardless of how we
change the payoffs outside W , the answer will remain positive for the new game; in particular,
the outcome of b will be an equilibrium outcome in the new game.
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Note that the property of being a sufficient collection only depends on the equilibrium
concept at hand and the given game form and strategy profile. That is, it does not depend on
the possible payoffs we might associate with the game form.

The gist of being a sufficient collection is contained in property ii). Hence, one might argue
about the necessity of i). Some minimality requirement needs to be imposed on a sufficient
collection, since an empty collection always satisfies ii). Thus, the path of b is a natural

candidate since we then ensure that (bW , b̂−W ) is realization equivalent to b, which was an
important element in the motivation section.

Lemma 2. If W is sufficient for EC, Γ and b, then it is also sufficient for any other b̄ such
that bW = b̄W .

Proof. Straightforward.

Lemma 3. The intersection of sufficient collections is a sufficient collection.

Proof. Fix an equilibrium concept EC. Let Γ be a game form and b ∈ B(Γ). Let W and W̄
be two sufficient collections (for EC, Γ, and b). First, W ∩ W̄ contains π(b). Then, let G and

Ḡ ∈ G(Γ) be such that b ∈ EC(G) and EC(Ḡ) 6= ∅. We want to find b̂ ∈ EC(G⊗W∩W̄ Ḡ) such

that b and b̂ coincide in W ∩ W̄ . Since W is a sufficient collection, there is b̃ ∈ EC(G ⊗W Ḡ)
that coincides with b in W . Let G̃ = G ⊗W Ḡ. Since W̄ is a sufficient collection, there is
b̂ ∈ EC(G̃⊗W̄ Ḡ) that coincides with b̃ in W̄ . Now, by definition, b̂ coincides with b in W ∩ W̄
and G̃ ⊗W̄ Ḡ = G ⊗W∩W̄ Ḡ.

Corollary 1. Fix an equilibrium concept EC. Let Γ be a game form and b ∈ B(Γ). Then,
there is a unique minimal collection that is sufficient for EC, Γ, and b. Moreover, there is a
unique minimal collection that is closed and sufficient for EC, Γ, and b.

Proof. Take the intersection of all the sufficient collections for EC, Γ, and b. Since Γ is always a
sufficient collection and all the sufficient collections contain π(b), non-emptiness is guaranteed.
The above intersection is contained in all the sufficient collections and its sufficiency follows
from Lemma 3. The proof of the second statement is analogous, since Γ is a closed collection
and the intersection of closed collections is a closed collection.

Remark 1. Note that if W and W̄ are two collections such that W ⊂ W̄ and W is sufficient
(for some EC, Γ, and b), then it need not be the case that W̄ is also sufficient. The reason

is that the condition that b and b̂ coincide in W̄ (Definition 1) can be much more demanding
than the corresponding condition for W .

Definition 2. Fix an equilibrium concept EC. Let Γ be a game form and b ∈ B(Γ). The
essential collection for EC, Γ, and b, denoted by WEC(Γ, b), is defined as the unique minimal
collection that is closed under � and sufficient for EC, Γ, and b.

To essentialize an equilibrium concept EC is to find the map WEC that assigns, to each
pair (Γ, b), the essential collection WEC(Γ, b).

Some explanation is needed for the requirement that an essential collection has to be closed.
First, it is quite natural. Think, for instance, of a belief-based equilibrium concept. In this
case, the closedness under � says that, if an information set u ∈ Ui(Γ) is in the essential
collection, i.e., player i’s behavior at u is relevant for EC, Γ, and b, then what b prescribes

6
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for information sets that precede u should also be relevant, as it might affect the beliefs and
behavior of i at u. Again, it might be argued that this should be a consequence of the defi-
nition and not part of the definition itself. Nonetheless, if this requirement is removed, then
some unnatural essential collections might appear. Second, the closedness requirement allows
for a more streamlined analysis and more natural constructions for the essential collections
associated with the different equilibrium concepts. Refer to Appendix A for further arguments
for and against this requirement.

2 Discussion of the contribution

In the previous section we formally defined what we mean by essentialize an equilibrium con-
cept. As we will see in the forthcoming sections, our definition is general enough to be applied
to all the classic equilibrium concepts. Unfortunately, the price of this generality is that the
analysis becomes quite cumbersome already for Nash equilibrium. An important part of the
paper is to formally characterize the essential collections associated with the different equilib-
rium concepts. Since this comprehensive exercise is quite arid, we present in this section an
informal overview of the main results of the paper and discuss the relevance of our contribution.
For the sake of exposition we abstract from the fact that essential collections have to be closed.
For the precise characterizations, refer to Sections 3 and 4.

We divide the equilibrium concepts to characterize in two big groups: non-belief-based
equilibrium concepts (NE, SPE, and PE) and belief-based equilibrium concepts (SR, WPBE,
SE, and a whole family of intermediate equilibrium concepts).

The characterizations for the non-beliefs-based equilibrium concepts are quite intuitive and
barely bring any new insights relative to the nature of the different equilibria. Informally, this
characterizations say the following. Let Γ be a game form and b ∈ B(Γ), then,

Nash equilibrium: The essential collection consists of all the information sets that can be
reached after a unilateral deviation from b.

Subgame perfect equilibrium: A subgame is relevant if it can be reached through a series
of unilateral deviations from b at other subgames. An information set belongs to the
essential collection if it can be reached after a unilateral deviation from b at a relevant
subgame. That is, the essential collection for SPE can be easily constructed iteratively:
at a given step, we add those subgames that can be reached after deviations from b at
subgames reached in the previous steps.

Perfect equilibrium: Every information set belongs to the essential collection.

In particular, in a game with perfect information, since a subgame begins at every node,
the essential collection for SPE contains all the nodes of the game, i.e., it coincides with that
of PE. Yet, this is not the case for NE.

Note that, for the above characterizations, the more demanding an equilibrium concept
is, the larger its corresponding essential collections are. This result is very natural and one
could expect the same relations to hold for belief-based equilibrium concepts. Remarkably, not
only these relations do not hold, but the opposite ones do, i.e., the more demanding a belief-
based equilibrium concept is, the smaller the corresponding essential collections are. More
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specifically,4

Sequential rationality: Every information set belongs to the essential collection.

Weak perfect Bayesian equilibrium: An information set u belongs to the essential collec-
tion if there is an assessment (b, µ) such that i) µ is calculated using Bayes rule in the
path of b and ii) according to µ, a node in u is reached with positive probability with a
series of unilateral deviations from b.

Sequential equilibrium: An information set u belongs to the essential collection if there is
an assessment (b, µ) such that i) µ is consistent with b and ii) according to µ, a node in
u is reached with positive probability with a series of unilateral deviations from b.

Moreover, our approach characterizes the essential collections associated with a family of
belief-based equilibrium concepts in an analogous manner. The reader can already note the
parallelism between the characterization of the essential collection for WPBE and that of SE
above; when applied to SR this approach would say that an information set u belongs to the
essential collection if there is an assessment (b, µ) such that, i) µ is any system of beliefs and ii)
according to µ, a node in u is reached with positive probability with a sequence of unilateral
deviations from b; and, clearly, with no restrictions on the beliefs, every node can always be
reached after a series of unilateral deviations.

As written, the above characterizations for belief-based equilibrium concepts may also seem
quite natural, but they imply that the more restrictive equilibrium concepts have smaller
essential collections. For instance, for every game form and every strategy profile, the essential
information sets for SE are a subset of those for WPBE or, equivalently, if an information set is
irrelevant for WPBE, then it is irrelevant for SE as well; we show in the example below that the
converse is not true in general. As a rough intuition for the latter implications, note that, when
dealing with the belief-based equilibrium concepts above, the only difference in their definitions
lies in the set of beliefs that can be considered; the less restrictive equilibrium concepts allow
for more beliefs and hence, more parts of the game tree can be reached after (sequences of)
unilateral deviations, which ultimately implies that the essential collections become larger for
the less restrictive equilibrium concepts.

We present now an example to illustrate some implications of the above characterizations
and also some applications of these and other results in the paper.

2.1 A candidate positioning game (Osborne, 1993)

In this example we discuss our contribution within the temporal model of political competition
of Osborne (1993, Section 4); also, throughout the exposition we will relate the arguments used
there with our approach. The relevant equilibrium concept will be SPE. The reader interested
in a similar discussion of the implications our results for belief-based equilibrium concepts
is referred to Appendix B, where we present another example with a deeper discussion that
focuses on WPBE and SE.

For the sake of exposition, we present a slightly modified version of the original model, also
omitting some elements that are not needed to illustrate our approach. The game has three
players, which represent the three potential candidates in an election. There is a continuum of

4Refer to Section 4 for the definition of assessment and of the different belief-based equilibrium concepts.
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voters, each of whom has a most preferred or ideal policy. Voter’s ideal policies are given by the
continuous distribution function F , whose support is the [0, 1] interval. Voters vote sincerely,
i.e., each voter endorses the candidate whose position is closest to his ideal; if indifferent, he
decides randomly. Candidates just want to win the election by plurality rule (get more votes
than any other candidate). At each period t ∈ {1, . . . , T} (T > 2), candidates simultaneously
decide whether to enter the competition or to wait. Candidate i enters the competition by
announcing a policy pi in the interval [0, 1]. Policies are decided once and for all. Hence, at
each period, a player who has already announced a policy cannot take any further action and,
otherwise, he can either announce a policy, i.e., a number in [0, 1], or decide to wait, which is
denoted by w. Candidates can only use pure strategies.5 A player who plays w in every period
is just a player who decides to stay out of the election. Once period T is over, the election is
held and the candidate with more votes wins. Let Γ(3) denote this 3-player game.

As Osborne argues, “in Γ(3), as in other sequential games in which some choices are made
simultaneously, the spirit of subgame perfect equilibrium is captured by a notion that requires
only a partial specification of the player’s strategies” and the idea behind this observation is
very close to our notion of essential collection. Suppose that we want to study a strategy
profile in which players 1 and 2 enter in period 1 with policies p1 and p2, respectively, whereas
player 3 chooses w in every period. Let b be a strategy profile in which the on-path behavior
is the one we have just described.

Again, following Osborne (1993): to fully describe b, for player 1 we must “specify an action
in period 2 for every first-period profile of actions (w, s2, s3), where s2 and s3 are members
of [0, 1] ∪ {w}. However, there is just one relevant subgame in which Player 1 has to take an
action: the one that follows the first-period action profile (w, x2, w)”.

Essential collections for SPE. Now, let WSPE be the essential collection for SPE, Γ,
and b. Then, following the informal characterization above, it is easy to see that the only
information set of the form (w, s2, s3) that would belong to WSPE would indeed be (w, x2, w),
since all the others involve a multilateral deviation at period 1. That is, an important advantage
of our approach is that it helps to study if different outcomes of the game are equilibrium
outcomes or not, since there is no need to check the incentives in many of the subgames of the
game.

The reduced game. In Section 5, given a game G, we associate a reduced game GW

with each (closed) collection of information sets W ; the basic idea is to remove from G all the
information sets that are not in W in such a way that what is left still forms a game. For
instance, when studying the strategy profile b, none of the subgames starting at information
sets of the form (w, s2, s3) would be the root of a subgame in the reduced game (except for
(w, x2, w)). Now, (by Proposition 6) if the restriction of b to the reduced game is a SPE of the
reduced game, then b is a SPE of Γ(3) (provided that Γ(3) indeed has at least one SPE).

Structural robustness. The main application of the reduced game may be to the study
of the structural robustness of the different equilibrium concepts. Suppose that we already
knew that b ∈ SPE(Γ(3)) but, how robust would this equilibrium be to structural changes in
the game? Suppose that, in order to encourage early positioning of candidates, the following
rule is imposed. If no candidate has entered the competition after period 2, then the election is
suspended. Would b still be an equilibrium of the new game? Since no subgame at which the

5Osborne argues that, in this setting, “the problem of finding equilibria in mixed strategies seems intractable”
and, moreover, “voters may have an aversion to candidates who choose their positions randomly. . . ”.
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election is suspended belongs to the reduced game associated with b (they cannot be reached
after unilateral deviations from b, where two candidates enter already in period 1), the above
change in the rules of the game would have no impact for the profile b. That is, whether b is
an equilibrium outcome or not is independent (robust) from those changes in the rules of Γ(3)
that only affect information sets outside the reduced game associated with b.

Partial-specifications of the game. This issue is very related to the one above. The idea
is that essential collections may help to give some information about the equilibrium outcomes
of games that are not completely specified. Suppose that, in Γ(3), we have no idea about how
the game unfolds if no player has entered the competition after period T . Even in this case we
know (by Corollary 4) that, no matter how the game is defined from that point onwards, the
outcome of b is going to be a SPE outcome. Hence, essential collections help to identify what
misspecifications in the game are irrelevant for different strategies and equilibrium concepts.

Virtual equilibrium concepts. Suppose that there are some subgames of game Γ(3) for
which we do not even know whether a Nash equilibrium exists or not. Then, it might be that
the game Γ(3) has no SPE. This motivates the definition of virtual equilibrium concepts. We
say that a strategy profile b is a virtual SPE if it is a SPE of the reduced game associated with
its essential collection (for SPE and the game form at hand); and the virtual version of any
other equilibrium concept is defined analogously. Hence, for the strategy b to be a virtual SPE
we need that all the subgames of the corresponding reduced game have a Nash equilibrium,
but we do not care about this for subgames outside the essential collection associated with b.
Given a virtual equilibrium, we can always replace the non-equilibrium behavior outside the
essential collection by equilibrium behavior (if this exists) to get an equilibrium in the classic
sense. Then, (by Proposition 6) if the set of SPE of the original game is nonempty, the set of
SPE outcomes and virtual SPE outcomes coincide (which justifies the name virtual).

Actually, the equilibrium notion introduced in Osborne (1993) is extremely close to the
virtual version of SPE. Indeed, Osborne wrote “the advantage of working with this notion of
equilibrium in the game Γ(3) is that it is not necessary . . . to worry about the existence of an
equilibrium, in ’irrelevant subgames’ ” and “the relation between an equilibrium in this sense
and a subgame perfect equilibrium is close: a subgame perfect equilibrium is an equilibrium
and if every subgame has a subgame perfect equilibrium then an equilibrium is associated with
at least one subgame perfect equilibrium”, which is analogous to what we said above for virtual
equilibrium concepts: every EC is a VEC and, if an EC exists, for each VEC we can find an
EC with the same outcome.

3 Essentializing non-belief-based equilibrium concepts

We devote this section to the essentialization of the classic equilibrium concepts: Nash equi-
librium, subgame perfect equilibrium, and perfect equilibrium. As we have already said, these
characterizations barely bring new insights concerning these equilibrium concepts. Yet, there
are some important reasons for also undergoing these characterizations. First, to some extent,
the fact that we get intuitive results for these equilibrium concepts reassures the adequacy of
our definitions. Second, to get the reader familiar with our approach and with the techniques
of the proofs; all the characterizations in the paper share common ideas, but the proofs become
more involved as we move on. Last but not least, for the sake of completeness.

10



M
ay

 3
1,

 2
00

9

Pr
el

im
in

ar
y

We introduce now a stronger version of sufficiency that will be quite convenient to prove
the characterization results below.

Definition 3. Fix an equilibrium concept EC. Let Γ be a game form and b ∈ B(Γ). A
collection W ⊂ U(Γ) is strongly sufficient for EC, Γ, and b if it has the following properties:

i) π(b) ⊂ W , i.e., W contains the path of b.

ii) Let b̄ ∈ B(Γ) and G, Ḡ ∈ G(Γ) be such that b ∈ EC(G) and b̄ ∈ EC(Ḡ). Then, b ⊗W b̄ ∈
EC(G ⊗W Ḡ).

3.1 Nash equilibrium

Let Γ be a game form and b ∈ B(Γ). Then, let W b
NE ⊂ U(Γ) be defined as the closure under �

of the collection of information sets that can be reached after at most one unilateral deviation
from b, i.e., W b

NE := 〈{u ∈ U(Γ) : there are i ∈ N and b′i ∈ Bi(Γ) such that u ∈ π(b−i, b
′
i)}〉.

Note that π(b) ⊂ W b
NE (just take b′i = bi) and W b

NE is a terminal collection. Figure 2 illustrates
the previous definition. Not surprisingly, the collection W b

NE suffices to essentialize NE.

Γ, b = (D, d)

1

2

U

u

u
D

d

d

WNE(b)

Figure 2: The collection W b
NE.

Proposition 1. W b
NE is the essential collection for NE, Γ, and b.

Proof. First, we show that W b
NE is strongly sufficient for NE, Γ, and b. By definition, π(b) ⊂

W b
NE. Let b̄ ∈ B(Γ) and G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ NE(G) and b̄ ∈ NE(Ḡ).

Suppose b⊗ /∈ NE(G⊗). Then, there are i ∈ N and b′i ∈ Bi(Γ) such that h⊗
i (b⊗−i, b

′
i) >

h⊗
i (b⊗). Since π(b) ⊂ W b

NE, h⊗
i (b⊗) = hi(b). By definition of W b

NE, π(b⊗−i, b
′
i) ⊂ W b

NE. Hence,

h⊗
i (b⊗−i, b

′
i) = hi(b

⊗
−i, b

′
i). Moreover, since (b−i, b

′
i) and (b⊗−i, b

′
i) coincide in W b

NE, π(b−i, b
′
i) =

π(b⊗−i, b
′
i). Hence, hi(b−i, b

′
i) = hi(b

⊗
−i, b

′
i) > hi(b

⊗) = hi(b). Contradicting the fact that
b ∈ NE(G).

Second, we show that W b
NE is a minimal closed and sufficient collection and thus, essential.

By definition, W b
NE = 〈W b

NE〉. Let W be a sufficient and closed collection for NE, Γ, and b that
does not contain W b

NE. By Lemma 1, since W b
NE is terminal, there is z̄ ∈ (W b

NE\W )∩Z(Γ). Let
i ∈ N and b′i ∈ B(Γ) be such that z̄ ∈ π(b−i, b

′
i). Consider the path of information sets from the

root to z̄, {u1, . . . , uk}, i.e., u1 = r(Γ) and uk = z̄. Since W b
NE is closed, {u1, . . . , uk} ⊂ W b

NE.

Since W is also closed, u1 ∈ W and uk /∈ W , there is a unique k̄ such that uk̄−1 ∈ W and

11
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uk̄ /∈ W . Let G = (Γ, h) be such that, for each i ∈ N and each z ∈ Z(Γ), hi(z) = 0. Let
Ḡ = (Γ, h̄) be such that, for each i ∈ N and each z ∈ Z(Γ), if uk̄ � z, h̄i(z) := 1 and h̄i(z) := 0
otherwise. Note that, since W is closed, h̄i(z) = 1 implies that z /∈ W . Note that b ∈ NE(G)

and G⊗W Ḡ = Ḡ. Since π(b) ⊂ W , in game Ḡ, all the payoffs in π(b) are 0. Take now b̂ ∈ B(Γ)

such that it coincides with b in W . Then, for each i ∈ N , hi(b̂) = 0. By construction, there is

z ∈ Z(Γ) such that uk̄ � z and z ∈ π(b̂−i, b̄i). Hence, hi(b̂−i, b̄i) > 0 = hi(b̂), b̂ /∈ NE(G⊗W Ḡ),
contradicting the sufficiency of W .

3.1.1 Nash equilibrium in strategic games

After the analysis above, it is natural to wonder what happens if we try to carry out a similar
analysis for strategic games and also study the relations between the analysis for an extensive
game and the associated strategic one. Figure 3 below shows that identifying the elements of a
strategic game that are inessential to check if a given strategy profile is a NE is straightforward.
The payoffs outside the shaded cross are not needed to check if (c1, d2) is a NE. More precisely,
take an extensive form Γ, a strategy profile b and let S(Γ) be the strategic form associated
with Γ. Then, there is a one to one mapping between the cells in the cross associated with b in
S(Γ) and the terminal nodes of the essential collection WNE(Γ, b). Yet, using strategic games
to identify inessential elements for other equilibrium concepts like SPE or SE would become
very cumbersome.

a2 b2 c2 d2 e2 f2

a1 6 , 5 2 , 3 8 , 2 1 , 3 1 , 4 2 , 5
b1 6 , 5 1, 5 2 , 3 0 , 5 2 , 3 2 , 2
c1 4 , 1 3 , 0 2 , 0 2 , 2 0 , 0 1 , 1
d1 8 , 9 9 , 1 2 , 3 1 , 1 2 , 3 4 , 7

Figure 3: Essentializing NE in strategic games.

3.2 Subgame perfect equilibrium

Given u ∈ U(Γ), let Wu := {v ∈ U(Γ) : u � v}. A node x ∈ X(Γ) is elemental if either it is a
terminal node or, for each game (Γ, h), a subgame begins at x.6 In particular, if x is elemental,
then ux = {x}. Given x ∈ u ∈ U(Γ), let bx and bu denote the restriction of b to Wu. Consider
the following definition of (nested) subsets of U(Γ) (indeed, of elemental nodes).

Step 0: X0(b) coincides with the root of Γ.

Step t: An elemental node x belongs to Xt(b) if there are i ∈ N , b′i ∈ Bi(Γ), and y ∈ Xt−1(b)
such that x is reached by (b−i, b

′
i)y.

Then, let XSPE(b) := limt→∞ Xt(b). Roughly speaking, XSPE(b) consists of the elemental
nodes that can be reached with a series of unilateral deviations from b. Since the game tree

6The notion of subgame we use is the standard one introduced in Selten (1975).
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is finite, XSPE(b) is well defined. Let W b
SPE := 〈XSPE(b)〉. Note that W b

SPE is a terminal
collection.7

Proposition 2. W b
SPE is the essential collection for SPE, Γ, and b.

Proof. First, we show that W b
SPE is strongly sufficient for SPE, Γ, and b. Clearly, π(b) ⊂ W b

SPE.
Let b̄ ∈ B(Γ) and G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ SPE(G) and b̄ ∈ SPE(Ḡ). We
show now that b⊗ ∈ SPE(G⊗). Let x ∈ X(Γ) be an elemental node. If x /∈ W b

SPE then, since
W b

SPE is closed, Wux
∩ W b

SPE = ∅; hence, since b̄ ∈ SPE(Ḡ), b⊗ induces a Nash equilibrium in
the subgame of G⊗ that begins at x. If x ∈ W b

SPE, by definition of W b
SPE, no elemental node

outside W b
SPE can be reached with unilateral deviations from b at nodes in W b

SPE. Hence, since
b ∈ SPE(G), b⊗ induces a Nash equilibrium in the subgame of G⊗ that begins at x. Hence,
b⊗ ∈ SPE(G⊗).

Second, we show that W b
SPE is a minimal closed and sufficient collection and thus, essential.

By definition, W b
SPE = 〈W b

SPE〉. Let W be a closed and sufficient collection for SPE, Γ and b that
does not contain W b

SPE. By Lemma 1, since W b
SPE is terminal, there is z̄ ∈ (W b

SPE\W )∩Z(Γ).
Consider the elemental nodes in the path from the root to z̄, namely {x1, . . . , xk}, where
x1 = r(Γ) and xk = z̄. Since W b

SPE is closed, {x1, . . . , xk} ⊂ W b
SPE. Since W is also closed,

there is a unique k̄ ≥ 1 such that xk̄−1 ∈ W and xk̄ /∈ W . Since W is sufficient, π(b) ⊂ W
and hence, xk̄ ∈ W b

SPE\π(b). Then, there are i ∈ N , b′i ∈ Bi(Γ) and y ∈ XSPE(b) such that xk̄

is reached by (b−i, b
′
i)y and not by by. Let G = (Γ, h) be such that, for each i ∈ N and each

z ∈ Z(Γ), hi(z) = 0. Let Ḡ = (Γ, h̄) be such that, for each i ∈ N and each z ∈ Z(Γ), if xk̄ � z,
h̄i(z) := 1 and h̄i(z) := 0 otherwise. Note that, since W is closed, h̄i(z) = 1 implies that z /∈ W .

Note that b ∈ SPE(G) and G ⊗W Ḡ = Ḡ. Take now b̂ ∈ B(Γ) such that it coincides with b in

W . Then, for each i ∈ N , hi(b̂) = 0. By construction, there is z ∈ Z(Γ) such that xk̄ � z that

is reached by (b̂−i, b
′
i)y. Hence, in the subgame of Ḡ that begins at y, payoff 1 is obtained with

positive probability instead of getting 0 for sure. Therefore, b̂ /∈ SPE(Ḡ) = SPE(G ⊗W Ḡ),
contradicting the sufficiency of W .

3.3 Perfect equilibrium

Given a game form Γ and a strategy profile b ∈ B(Γ), the unique sufficient collection for PE,
Γ, and b is U(Γ). Therefore, U(Γ) is the essential and essential collection for PE, regardless of
the strategy profile b.

Proposition 3. U(Γ) is the essential collection for PE, Γ, and b.

Proof. By definition, U(Γ) is always closed, sufficient. Hence, it suffices to show that U(Γ) is
a minimal closed and sufficient collection and thus, essential. Let W be a closed and sufficient
collection for SPE, Γ and b strictly contained in U(Γ). By Lemma 1, since U(Γ) is terminal,
there is z̄ ∈ (U(Γ)\W ) ∩ Z(Γ) and, in particular, z̄ /∈ π(b). Let G = (Γ, h) be such that, for
each i ∈ N and each z ∈ Z(Γ), hi(z) = 0. Let Ḡ = (Γ, h̄) be such that, for each i ∈ N and
h̄i(z̄) := 1 and h̄i(z) := 0 otherwise. Note that b ∈ PE(G) and G ⊗W Ḡ = Ḡ. Note that Ḡ

has a unique perfect equilibrium in which z̄ is reached with probability 1. Hence, if b̂ ∈ B(Γ)

coincides with b in W , since z̄ /∈ π(b), then, b̂ /∈ PE(Ḡ) = PE(G ⊗W Ḡ), contradicting the
sufficiency of W .

7Note that 〈X1(b)〉 = W b
NE.
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For the discussed equilibrium concepts, the essential collections exhibit a feature that, a
priori, seems quite natural. Namely, for each game form Γ and each b ∈ B(Γ), WNE(Γ, b) ⊂
WSPE(Γ, b) ⊂ WPE(Γ, b). Therefore, we might think that, in general, if two equilibrium con-
cepts EC1 and EC2 are such that, for each game G, EC1(G) ⊂ EC2(G), then, for each game
form Γ and each b ∈ B(Γ), WEC2(Γ, b) ⊂ WEC1(Γ, b). The results in the next section show that
the latter claim is not true.

4 Essentializing belief-based equilibrium concepts

4.1 Belief-based equilibrium concepts. A first Approach

In this section we turn to some of the main concepts that have been studied for extensive games
with imperfect information. Remarkably, our main result, Theorem 1 applies to a wide family
of belief-based equilibrium concepts.

Following Kreps and Wilson (1982), given a game form Γ, a system of beliefs over X(Γ)\Z(Γ)
is a function µ : X(Γ)\Z(Γ) → [0, 1] such that, for each u ∈ U(Γ),

∑

x∈u µ(x) = 1. An assess-
ment is a pair (b, µ), where b is a behavior strategy profile and µ is a system of beliefs. Let
M(Γ) denote the set of all beliefs that can be defined for Γ. Given W ⊂ U(Γ) and µ, µ̄ ∈ M(Γ),
let µ ⊗W µ̄ := (µW , µ̄−W ); when no confusion arises, we use µ⊗. We use hµ

iu(b) to denote i’s
expected utility conditional on information set u having been reached, that the probability of
being at each node x ∈ u is given by µ and that b is to be played thereafter.

Let Γ be a game form, (b, µ) an assessment and b′i ∈ Bi. Let u ∈ Ui. We say that b′i is a
best reply of player i against (b, µ) at u if hµ

iu(b−i, b
′
i) = maxb′′

i
∈Bi

hµ
iu(b−i, b

′′
i ). An assessment

(b, µ) is sequentially rational if, for each i ∈ N and each u ∈ Ui, bi is a best reply of player i
against (b, µ) at u. We adopt a standard abuse of language and, given an equilibrium concept
EC defined for assessments, we write b ∈ EC(G) to mean that there is µ ∈ M(Γ) such that
(b, µ) ∈ EC(G).

Let G = (Γ, h) be an extensive game and (b, µ) an assessment. Consider the following
definition of (nested) subsets of U(Γ).

Step 0: U0 := 〈π(b)〉.8

Step t: An information set v ∈ U(Γ) belongs to V t if there are i ∈ N , b′i ∈ Bi(Γ), and an
information set u ∈ U t−1 ∩ Ui(Γ) such that v is reached with positive probability by
(b−i, b

′
i)u when the probabilities of the nodes in u are given by µ. Let U t := 〈V t〉.

Let W b,µ := limt→∞ U t. Since the game tree is finite, W b,µ is well defined. Note that W b,µ

is a terminal collection. Figure 4 provides an example of the previous definition.

4.1.1 Weak perfect Bayesian equilibrium

Let G = (Γ, h) be an extensive game. An assessment (b, µ) is weakly consistent with Bayes rule
if µ is derived using Bayesian updating in the path of b. A weak perfect Bayesian equilibrium
is an assessment that is sequentially rational and weakly consistent with Bayes rule.

Let Γ be a game form and let (b, µ) be an assessment that is weakly consistent with Bayes
rule. We show below that, although W b,µ is a natural candidate to be a sufficient collection

8For the sake of exposition, we do not make explicit the fact that the sets U t and V t depend on b and µ.
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for WPBE, Γ, and b, something else is needed. Consider the game G in Figure 4. Consider the

b = ((D, d), D)
µ(x) = 1, µ(y) = 0

1

1
2

x

y

(3,1)

(1,0)

(0,0)

(0,1)

(2,4)

z1

z2

z3

z4

U

u

D

d

D

D

U

U

W b,µ

Figure 4: The collection W b,µ is not sufficient.

assessments (b, µ) and (b, µ̄) where µ and µ̄ are such that µ(x) = 1, µ(y) = 0, µ̄(x) = 0, and
µ̄(y) = 1. Since the information set of player 2 is off-path, all the beliefs in this game are weakly
consistent with Bayes rule. Note that (b, µ) /∈ WPBE(G) whereas (b, µ̄) ∈ WPBE(G). Yet, to
know that b ∈ WPBE(G), it does not suffice to look at the payoffs in W b,µ. More formally, we
show now that W b,µ is not sufficient for WPBE, Γ, and b. In this example, W b,µ = U(Γ)\{z3}.
Recall that b ∈ WPBE(G). Let Ḡ be identical to G except for the fact that h̄(z3) = (0, 2).
Then, b̄ = ((U, d), U) ∈ WPBE(Ḡ). Now, b ⊗W b,µ b̄ = b /∈ WPBE(G ⊗W b,µ Ḡ), since, in
G ⊗W b,µ Ḡ, the choice D for player 2 is strictly dominated and hence, no beliefs make that
choice sequentially rational. Similarly, by adequately rearranging the payoffs in the game G,
it can be shown that W b,µ̄ is not sufficient for WPBE, Γ, and b.

Despite of the discussion above, the collections W b,µ are the key to essentialize WPBE.
Let Mwc(b) := {µ ∈ M(Γ) : (b, µ) is weakly consistent with Bayes rule}. Now, define the
collection W b

WPBE :=
⋃

µ∈Mwc(b) W b,µ. Since the union of closed and terminal collections is a

closed and terminal collection, W b
WPBE is closed and terminal.

Proposition 4. W b
WPBE is the essential for WPBE, Γ, and b.

Proof. This result is a particular case of the general result in Section 4.2 (Theorem 1).

4.2 Belief-based equilibrium concepts. A general result

We develop now a general approach that allows to tackle several belief-based equilibrium con-
cepts at once. Unfortunately, sequential equilibrium needs a separate treatment.

Let F be the set of all correspondences that select, for each game form Γ and each b ∈ B(Γ),
a subset of M(Γ) (the set of all beliefs that can be defined for Γ). 9

Let Γ be a game form, b ∈ B(Γ), and G ∈ G(Γ). Let f ∈ F . We say that b is sequentially
rational under f in game G, denoted by b ∈ SRf (G), if there is µ ∈ f(Γ, b) such that the
assessment (b, µ) is sequentially rational. The above definition can be used to account for most
belief-based solution concepts:

• Sequential rationality: fSR(Γ, b) := M(Γ).

9More formally, let A denote the set of all pairs (Γ, b), where Γ is a game form and b ∈ B(Γ). Then,
F := {functions from A to 2M(Γ)}.
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• WPBE: fWPBE(Γ, b) := {µ ∈ M(Γ) : µ is derived by Bayes rule in π(b)} = Mwc(b).

• SE: fSE(Γ, b) := {µ ∈ M(Γ) : µ is consistent with b}.

• Moreover, also the different versions of perfect Bayesian equilibrium that have been dis-
cussed in the literature can be defined as sequentially rational under some f ∈ F .

Given f ∈ F , a game form Γ, and b ∈ B(Γ), define the collection W b
f := ∪µ∈f(Γ,b)W

b,µ. Note

that, in particular, W b
fWPBE = W b

WPBE. Since the union of closed and terminal collections is a

closed and terminal collection, all the W b
f collections are closed and terminal.

Lemma 4. Let f, f ′ ∈ F be such that, for each Γ and each b ∈ B(Γ), f(Γ, b) ⊂ f ′(Γ, b). Then,

for each game G, SRf (G) ⊂ SRf ′

(G).

Proof. Straightforward.

The next auxiliary lemma plays an important role in the proofs of the results in this section.
Let u, v ∈ U(Γ).

Lemma 5. Let f ∈ F . Let Γ be a game form and b ∈ B(Γ). Let W ⊂ U(Γ) be a closed
collection containing π(b) such that W b

f \W 6= ∅. Then, there are i ∈ N , ũ ∈ W ∩ Ui(Γ),

ṽ ∈ W b
f \W , µ̃ ∈ f(Γ, b), xũ ∈ ũ, xṽ ∈ ṽ, and b̃i ∈ Bi(Γ) such that

i) xũ ≺ xṽ and xṽ (and hence, ṽ) is reached with positive probability under µ̃ by (b−i, b̃i)ũ.

ii) Let {x1 = xũ, . . . , xl = xṽ} be the path from xũ to xṽ. For each l̄ < l, uxl̄ ∈ W .

Proof. By Lemma 1, there is z ∈ (W b
f \W ) ∩ Z(Γ). Let µ̃ ∈ f(Γ, b) be such that z ∈ W b,µ̃.

Recall the (iterative) definition of W b,µ̃. Since U0 = 〈π(b)〉 and π(b) ⊂ W = 〈W 〉, then
U0 ⊂ W . Hence, there is t ≥ 1 such that z ∈ U t\U t−1. Let ut := z. We now proceed
backwards to identify the information sets used to reach ut. Since ut ∈ U t\U t−1, there is
vt ∈ V t\U t−1 such that ut � vt (indeed, since ut = z ∈ Z(Γ), in this first step vt = ut).
Since vt ∈ V t\U t−1, there are it ∈ N , bt

it ∈ Bit(Γ), and ut−1 ∈ (U t−1\U t−2) ∩ Uit(Γ),10 such
that vt is reached with positive probability by (b−it , bt

it)ut−1 . Hence, we can define a sequence
{u0, v1, u1, . . . , vt, ut}, where u0 ∈ 〈π(b)〉. Hence, u0 ∈ W and, since ut /∈ W , W = 〈W 〉, and
ut � vt, we have that vt /∈ W ; similarly, for each t′ ∈ {0, . . . , t}, if ut′ /∈ W , then vt′ /∈ W . Let
t̄ := mint′∈{0,...,t}{t

′ : ut′−1 ∈ W and vt′ /∈ W}. Define i := it̄, ũ := ut̄−1, and b̃i := bt̄
it̄ . Let

x̄ ∈ vt̄ be such that x̄ is reached with positive probability under µ̃ by (b−i, b̃i)ũ. Let xũ be the
node in ũ such that xũ ≺ x̄. Let {ũ = w0, w1, . . . , wk = vt̄} be the path of information sets
from xũ to x̄. All the information sets in {w0, w1, . . . , wk} are reached with positive probability
under µ̃ by (b−i, b̃i)ũ. Since w0 ∈ W , wk /∈ W , and W = 〈W 〉, there is a unique k̄ such that
wk̄−1 ∈ W and wk̄ /∈ W . Now, define ṽ := wk̄ and let xṽ be the node in the path from xũ to x̄
that belongs to ṽ. So defined, it is clear that ũ ∈ W ∩ Ui, ṽ ∈ W b,µ̃ and hence, ṽ ∈ W b

f \W ; i)
and ii) follow from the construction.

For our general result we need to restrict to a subset of F . Let f ∈ F . We say f is regular
if, given b, b̄ ∈ B(Γ), the following properties hold

10If t = 1, then U t−2 = U−1 := ∅.

16



M
ay

 3
1,

 2
00

9

Pr
el

im
in

ar
y

i) for each µ ∈ f(Γ, b) and each µ̄ ∈ f(Γ, b̄), µ ⊗W b
f

µ̄ ∈ f(Γ, b ⊗W b
f

b̄) and, conversely,

ii) for each µ̄ ∈ f(Γ, b ⊗W b
f

b̄), there is µ ∈ f(Γ, b) such that µ̄ and µ coincide in W b
f .

In words, the beliefs inside W b
f do not impose any restriction in the beliefs outside W b

f

and vice versa. According to the above definition, fSE fails to be regular (see Example 5 in
the Appendix) and hence, sequential equilibrium needs to be studied on his own.11 Nonethe-
less, sequential rationality, WPBE, and many natural refinements of the latter can be defined
through regular functions.12

Lemma 6. Let f ∈ F be regular. If b and b̄ coincide in W b
f , then W b

f = W b̄
f .

Proof. Note that b̄ = b ⊗W b
f

b̄. We prove first that W b
f ⊂ W b̄

f . Suppose, on the contrary, that

there is u ∈ W b
f \W

b̄
f . Take i ∈ N , ũ ∈ W b̄

f ∩ Ui, ṽ ∈ W b
f \W

b̄
f , µ̃ ∈ f(Γ, b), and b̃i ∈ Bi(Γ) as in

Lemma 5. Since f is regular, there is µ̄ ∈ f(Γ, b̄) that coincides with µ̃ in W b
f . Since bW b

f
= b̄W b

f

and W b
f = 〈W b

f 〉, for each w ∈ U(Γ) such that w ≺ ṽ, bw = b̄w and hence, ṽ is reached with

positive probability under µ̄ by (b̄−i, b̃i)ũ. Therefore, ṽ ∈ W b̄
f and we have a contradiction.

Hence, W b
f ⊂ W b̄

f .

We prove now that W b̄
f ⊂ W b

f . Suppose, on the contrary, that there is u ∈ W b̄
f \W

b
f . Take

now i ∈ N , ũ ∈ W b
f ∩ Ui, ṽ ∈ W b̄

f \W
b
f , µ̃ ∈ f(Γ, b̄), and b̃i ∈ Bi(Γ) as in Lemma 5. Since f

is regular, there is µ ∈ f(Γ, b) that coincides with µ̃ in W b
f . If we had b

W b̄
f

= b̄
W b̄

f
we could

follow as above. Yet, we just know that bW b
f

= b̄W b
f
. From ii) in Lemma 5, all the information

sets in the path from xũ to xṽ belong to W b
f . Hence, by i) in Lemma 5, if b and b̄ coincide in

W b
f , ṽ is reached with positive probability under µ by (b−i, b̃i)ũ and we can derive the same

contradiction as before.

Theorem 1. Let f ∈ F be regular. Then, W b
f is the essential collection for SRf , Γ, and b.

Proof. First, we show that W b
f is a strongly sufficient collection for SRf , Γ, and b. By definition,

π(b) ⊂ W b
f . Let b̄ ∈ B(Γ) and G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ SRf (G) and

b̄ ∈ SRf (Ḡ). We claim that (b⊗, µ⊗) ∈ SRf (G⊗). Since f is regular, (b⊗, µ⊗) ∈ f(Γ, b⊗). We
show now that it is sequentially rational. Let u ∈ U(Γ). First, suppose that u /∈ W b

f . Since

W b
f = 〈W b

f 〉, for each z ∈ Z(Γ) such that u ≺ z, z /∈ W b
f and hence, h⊗(z) = h̄(z). Therefore,

since b̄ ∈ SRf (Ḡ), b⊗ is sequentially rational at u in G⊗. So suppose u ∈ W b
f . By definition

of W b
f , as far as beliefs in f(W, b) are considered, no terminal node outside W b

f is reached

with positive probability after unilateral deviations from b at information sets in W b
f ; besides,

by Lemma 6, W b
f = W b⊗

f and hence, those terminal nodes are not reached either when the

11Moreover, also the perfect Bayesian equilibrium as defined in Fudenberg and Tirole (1991b) for multistage
games with observed actions fails to be regular.

12For instance, Kreps and Wilson (1982) defined an equilibrium concept called extended subgame perfect

equilibrium, a refinement of WPBE that imposes the use of Bayes rule off the equilibrium path (and hence,
refines SPE as well). This equilibrium concept can be defined using regular functions.
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beliefs in the information sets in W b
f are taken from f(W, b⊗). Hence, since b ∈ SRf (G), b⊗ is

sequentially rational at u in G⊗. Hence, b⊗ ∈ SRf (G⊗).
Second, we show that W b

f is a minimal closed and sufficient collection and thus, essential.

By definition, W b
f = 〈W b

f 〉. Let W be a closed and sufficient collection for SRf , Γ, and b

that does not contain W b
f . By Lemma 1, since W b

f is terminal, there is z̄ ∈ (W b
f \W ) ∩ Z(Γ).

Let µ ∈ f(Γ, b) be such that z̄ ∈ W b,µ. Take i ∈ N , ũ ∈ W ∩ Ui, ṽ ∈ W b
f \W , µ̃ ∈ f(Γ, b),

b̃i ∈ Bi(Γ), xṽ, and xũ as in Lemma 5. Since xṽ is reached with positive probability under µ̃ by
(b−i, b̃i)ũ, µ̃(xũ) > 0.13 Let c̃ denote the choice at xũ that is in the path to xṽ. We distinguish
two cases:

Case 1: bi(c̃) = 0, i.e., according to b, choice c̃ is never made. Then, ṽ is not reached
with positive probability under µ̃ by bũ. Let G = (Γ, h) be such that i) (b, µ̃) ∈ SRf (G) and
ii) given a choice c 6= c̃ at ū, conditional on ũ being reached, c is strictly dominated by c̃ in all
nodes of ũ but xũ. Since µ̃(xũ) > 0, i) and ii) are compatible. Let Ḡ = (Γ, h̄) be such that,
for each j ∈ N and each z ∈ Z(Γ), if xṽ � z, h̄j(z) := MG and h̄j(z) := hj(z) otherwise.14

Since ṽ /∈ W and W = 〈W 〉, for each z ∈ Z(Γ) such that ṽ ≺ z, z /∈ W . Now, b ∈ SRf (G)

and SRf (Ḡ) 6= ∅ (just take any strategy profile with payoff MG). We claim that if b̂ ∈ B(Γ)

coincides with b in W , then b̂ /∈ SRf (G ⊗W Ḡ). Note that G ⊗W Ḡ = Ḡ. By construction, in
game Ḡ, conditional on ũ being reached, c̃ is strictly dominant at ũ (playing b̃i(ũ) at xũ leads

to a payoff of MG). Since ũ ∈ W , bi(c̃) = 0 and b̂W = bW , b̂ is not sequentially rational at ũ.
Case 2: bi(c̃) > 0. Now ṽ is reached with positive probability under µ̃ by bũ. Let G = (Γ, h)

be such that i) (b, µ̃) ∈ SRf (G) and ii) there is a choice c 6= c̃ at ū such that, conditional on ũ
being reached, c that strictly dominates c̃ in all nodes of ũ but xũ. Let Ḡ = (Γ, h̄) be such that,
for each j ∈ N and each z ∈ Z(Γ), if xṽ � z, h̄j(z) := −(MG) and h̄j(z) := hj(z) otherwise.
The rest is very similar to Case 1.

Corollary 2. U(Γ) is the essential collection for SR, Γ, and b.

Proof. Immediate from Theorem 1 and the fact that fSR(Γ, b) = M(Γ).

Corollary 3. Let f, f ′ ∈ F be regular. Let Γ and b ∈ B(Γ) be such that f(Γ, b) ⊂ f ′(Γ, b).
Then, WSRf (Γ, b) ⊂ WSRf′ (Γ, b).

Recall the claim we made at the end of Section 3. “If two equilibrium concepts EC1 and
EC2 are such that, for each game G, EC1(G) ⊂ EC2(G), then, for each game form Γ and each
b ∈ B(Γ), WEC2(Γ, b) ⊂ WEC1(Γ, b)”. The above corollary implies that the claim is false (just
think of SR and WPBE). Furthermore, when combined with Lemma 4, it also implies that, for
belief-based equilibrium concepts, the opposite inclusion holds with a wide generality.

4.3 Decomposition of a game with respect to a collection

We introduce now a construction that is important to characterize the essential collections for
sequential equilibrium in Section 4.4 and also for the analysis in Section 5.

13The arguments that begin now go through regardless of whether ũ and ṽ a singletons and regardless of
whether ṽ is a terminal node or not.

14Recall that MG := maxi∈N,z∈Z(Γ)|hi(z)| + 1.
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Let Γ be a game form and let G = (Γ, h). Let W ⊂ U(Γ) be a closed collection. We
decompose G in a reduced game, GW , and its complement; one containing the information
sets in W and the other with those in U(Γ)\W . Figure 5 illustrates the construction. Let
X(W ) := {x ∈ X(Γ) : ux ∈ W} and let X(−W ) := X(Γ)\X(W ). Let A(W ) := {x ∈
X(−W ) : y ≺ x ⇒ y ∈ X(W )}, i.e., A(W ) contains the nodes in X(−W ) with no predecessors
in X(−W ).

We define the reduced game GW = (ΓW , hW ), illustrated in Figure 5(c). We refer to ΓW as
the reduced form associated with Γ and W . Basically, the game form ΓW is the restriction of Γ
to X(W ). Nonetheless some artificial terminal nodes need to be added to ensure that we have a
well defined game form.15 Formally, X(ΓW ) := X(W )∪A(W ), U(ΓW ) := (U(Γ)∩W )∪A(W )
and Z(ΓW ) := (Z(Γ) ∩ W ) ∪ A(W ). All the other elements of ΓW are defined by restricting
Γ to X(ΓW ) in the natural way. Let M ∈ R be some constant; M is fixed throughout the
paper. Typically, we think of M = MG, but the choice of the payoff for terminal nodes outside
W is irrelevant for our analysis.16. Now, for each z ∈ Z(ΓW ), hW (z) = h(z) if z ∈ W and
hW (z) = (M, . . . , M) if z /∈ W . We discuss the importance of the reduced games in Section 5.

Let b ∈ B0(Γ). For each x ∈ A(W ), let p(x, b) denote the probability that x is reached
given b and conditional on X(−W ) being reached. Now, we use b and the nodes in X(−W )
to define game G(−W, b) = (Γ−W,b, h−W,b); see Figure 5(d). The game form Γ−W,b is defined
as follows. The root of Γ−W,b is a node r−W /∈ X(Γ). X(Γ−W,b) := X(−W ) ∪ r−W . For
each x ∈ A(W ), there is an arc from r−W to x and the corresponding choice has probability
p(x, b). The rest of the elements are defined by restricting Γ to X(Γ−W,b) in the natural way;
in particular, Z(Γ−W,b) = X(−W ) ∩ Z(Γ) and, for each z ∈ Z(Γ−W,b), h−W,b(z) = h(z). Note
that, given b, b̄ ∈ B0(Γ), G(−W, b) and G(−W, b̄) only differ in the probabilities of nature move
at the root. The games G(W, b) are crucial to prove Proposition 5 below.

4.4 Sequential equilibrium

We say that a behavior strategy b ∈ B is completely mixed if at each information set all the
choices are taken with positive probability. Let B0 denote the set of all completely mixed
behavior strategy profiles. Let Γ be an extensive game. An assessment (b, µ) is consistent if
there is some sequence {bn}n∈N ⊂ B0, such that (b, µ) = limn→∞(bn, µbn), where µbn denotes
the unique beliefs that are consistent with Bayes rule given bn. A sequential equilibrium is an
assessment that is sequentially rational and consistent.

Let Mcons(b) := {µ ∈ M(Γ) : (b, µ) is consistent}. Now, define the game form W b
SE :=

W b
fSE =

⋃

µ∈Mcons(b) W b,µ.

The fact that the W b
SE combination of consistent assessments needs not be a consistent

assessment implies that the function fSE is not regular and hence, Theorem 1 can not be
applied to SE. In Example 5 in the Appendix we illustrate why that fSE is not regular and
furthermore, that W b

SE needs not be a strongly sufficient collection for sequential equilibrium.

Proposition 5. W b
SE is the essential collection for SE, Γ, and b.

15Consider the game in Figure 5. Suppose that we try to define a game form by restricting Γ to the nodes in
X(W ) without adding any extra node. Then, in the information set of player 2 that contains three nodes, the
number of choices available to player 2 would not be the same for the different nodes.

16Indeed, it is not even needed that the payoffs are equal across players or across terminal nodes (outside
W ), but it facilitates the exposition.
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(0, 0, 0)
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(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(a) The game G. (b) A closed collection W ⊂ U(Γ).

1

2

3

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(M, M, M)

(M, M, M)

(c) The reduced game GW .

r−W

0
3

1

1

2

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(d) The (quasi) game G(−W, ·).

Figure 5: Decomposition of a game with respect to a closed collection

20



M
ay

 3
1,

 2
00

9

Pr
el

im
in

ar
y

Proof. First, we show that W b
SE is a sufficient collection for SE, Γ, and b. By definition,

π(b) ⊂ W b
SE. Let G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ SE(G). We want to show that

there is b̂ ∈ SE(G⊗) that coincides with b in W b
SE. Since b ∈ SE(G), there is µ ∈ Mcons such

that (b, µ) is sequentially rational. Hence, there is a sequence {bn}n∈N of completely mixed
strategies converging to b such that the associated consistent beliefs, namely {µn}n∈N, converge
to µ.

We use now the games defined in Section 4.3. Consider the games {Ḡ(−W b
SE, bn)}n∈N.

Let n ∈ N and let u be an information set of Ḡ(−W b
SE, bn) formed by nodes in A(W b

SE).
By definition, the beliefs induced by nature move at r−W b

SE

in u coincide with µn. For each

n ∈ N, let (b̄n, µ̄n) be a sequential equilibrium of Ḡ(−W b
SE, bn). The sequence {(b̄n, µ̄n)}n∈N

has a convergent subsequence; assume, without loss of generality, that the sequence itself
converges and let (b̄, µ̄) be its limit. We claim now that b ⊗W b

SE

b̄ ∈ SE(G⊗). We show that

(b ⊗W b
SE

b̄, µ ⊗W b
SE

µ̄) is a sequentially rational and consistent assessment.

Consistency: Let Γn be the game form of Ḡ(−W b
SE, bn). By definition, for each n, n̄ ∈ N,

B0(Γn) = B0(Γn̄). Let B̄0 := B0(Γn). Each b̄n is a sequential equilibrium of Ḡ(−W b
SE, bn).

Hence, for each n ∈ N, there is {b̄n,k}k∈N ⊂ B̄0 converging to bn and such that associated
beliefs (satisfying Bayes rule) converge to µ̄n. Hence, for each n ∈ N, there is g(n) ∈ N such
that ‖b̄n − b̄n,g(n)‖ ≤ 1

n
. Then, ‖b̄ − b̄n,g(n)‖ ≤ ‖b̄ − b̄n‖ + ‖b̄n − b̄n,g(n)‖ ≤ ‖b̄ − b̄n‖ + 1

n
.

Hence, since b̄n → b̄, {b̄n,g(n)}n∈N → b̄. The convergence result for the corresponding beliefs,
namely {µ̄n,g(n)}n∈N, to µ̄ is analogous. Our construction ensures that, for each n ∈ N and

each x ∈ A(W b
SE), µn(x) = µ̄n(x) and µ(x) = µ̄(x), i.e., the beliefs “match” in A(W b

SE).
Hence, for each n ∈ N, the beliefs associated with bn⊗W b

SE

b̄n,g(n) ∈ B0(Γ) are µn ⊗W b
SE

µ̄n,g(n).

Therefore, the consistency of (b ⊗W b
SE

b̄, µ ⊗W b
SE

µ̄) is obtained by considering the sequence

{bn ⊗W b
SE

b̄n,g(n)}n∈N.

Sequential rationality: The sequential rationality in the information sets in W b
SE imme-

diately follows from the sequential rationality of (b, µ) in G and the fact that, according to µ,
no node outside W b

SE can be reached with unilateral deviations from information sets W b
SE and

hence, the payoffs at all the terminal nodes that can be reached by unilateral deviations from
information sets in W b

SE are given by h. Similarly, only terminal nodes outside W b
SE can be

reached with unilateral deviations from information sets outside W b
SE and hence, the payoffs

are given by h̄. Thus, since all the {(b̄n, µ̄n)}n∈N are sequentially rational also the limit, (b̄, µ̄),
is sequentially rational.

Second, since W b
SE = W b

fSE , the proof the minimality is is analogous to the one for W b
f in

Theorem 1 (the regularity of f was not needed to show that W b
f is minimally sufficient).

It can be easily verified that WSPE ⊂ WSE. Hence, combining the results in Sections 3
and 4 we have:

WNE ⊂ WSPE ⊂ WSE ⊂ WWPBE ⊂ WSR = WPE = U.

5 The Reduced Game and its Applications

In this section we present some applications of the concepts of sufficient and essential collections.
All of them are based on the reduced games defined in Section 4.3.
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Proposition 6. Fix an equilibrium concept EC. Let Γ be a game form and let b ∈ B(Γ). Let
G = (Γ, h) ∈ G(Γ) be such that EC(G) 6= ∅. Let W be a closed collection sufficient (for EC, Γ,

and b). Then, there is b̂ ∈ EC(G) such that b̂W = bW if and only if bW ∈ EC(GW ). Moreover,

since π(b) ⊂ W , b and b̂ are realization equivalent.

Proof. Suppose there is b̂ ∈ EC(G) such that b̂W = bW . Let Ḡ ∈ G(Γ) be a game with constant

payoff (M, . . . , M). Since bW = b̂W and W is sufficient for EC, Γ, and b, then, by Lemma 2,

W is sufficient for EC, Γ, and b̂. Hence, there is b∗ ∈ EC(G⊗W Ḡ) such that b∗W = b̂W . Since,
in game G⊗W Ḡ, all the payoffs outside W coincide with (M, . . . , M), it is straightforward to
check that bW ∈ EC(GW ).

Suppose that bW ∈ EC(GW ) and let G∗ = (Γ, h∗) be defined, for each z ∈ Z(Γ) ∩ W , by
h∗(z) := h(z) and, for each z ∈ Z(Γ)\W and each i ∈ N , by h∗

i (z) := M . Since all the players
are indifferent among the choices outside W and bW ∈ EC(GW ), b ∈ EC(G∗). By definition,

G∗ ⊗W G = G. Since W is sufficient (for EC, Γ, and b) and EC(G) 6= ∅, there is b̂ ∈ EC(G)

that coincides with b in W and moreover, since π(b) ⊂ W , b̂ is realization equivalent to b.

The above result provides a first application of sufficient collections. Given a strategy
profile b and closed and sufficient collection W (for b), if bW is an equilibrium of the reduced
game, then the outcome of b is an equilibrium outcome in the original game. If bW is not an
equilibrium outcome of the reduced game, then no equilibrium of the original game will coincide
with b in W . In particular, the reduced game associated to the essential collection would be
the simplest of the games associated with b. Quite generally, the reduced game associated with
an essential collection is notably simpler than the original game. Recall the discussion in the
motivation section and refer to the games in Figure 7 below.

Apart from the immediate application described above, the reduced games can be also
applied in different (though related) directions. In the remainder of this section we discuss two
of them.

5.1 Structural robustness and partially-specified games

Let G = (Γ, h) be a game form and let W ∈ U(Γ) be a closed collection. Then, let Ω(W )
denote the set of game forms such that if Λ ∈ Ω(W ), then W ⊂ U(Λ), W is closed in Λ and
the nodes in W that are terminal in Γ are also terminal in Λ. Now, let G(W ) denote the set

of games Ĝ = (Λ, ĥ) such that Λ ∈ Ω(W ) and, for each z ∈ W ∩ Z(Γ), ĥ(z) = h(z). Take, for
example, the game GW in Figure 5(c). Clearly, GW ∈ G(W ) and moreover, any other game
that is defined from GW by adding new branches at the nodes in A(W ) (those with payoff
(M, M, M)) also belongs to G(W ). These new branches can intersect each other, but cannot
intersect W (since, otherwise, W would not be a closed collection in the resulting game form).
In particular, the game G itself also belongs to G(W ). We refer to the elements of G(W ) as
extensions of GW .

Remark 2. Fix an equilibrium concept EC. Let Γ be a game form and let W be a closed
collection. Let Λ ∈ Ω(W ). Now, it is clear from the definitions of Ω(W ) and ΓW that
ΓW = ΛW , i.e., the corresponding reduced forms associated with W coincide.

In the remainder of this section, EC refers only to the equilibrium concepts whose essential
collections we have characterized in Sections 3 and 4.
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Proposition 7. Fix an equilibrium concept EC. Let Γ be a game form and let b ∈ B(Γ).
Let Λ ∈ Ω(WEC(Γ, b)). Let b̄ ∈ B(Λ) be such that b and b̄ coincide in WEC(Γ, b). Then,
WEC(Γ, b) = WEC(Λ, b̄), i.e., the essential collections coincide.

Proof. It can be shown that WEC(Γ, b) is sufficient for EC, Λ, and b̄ just by paralleling the
arguments in the sufficiency part of the proof that WEC(Γ, b) is sufficient for EC, Γ, and b
but with Λ and b̄ instead of Γ and b. Hence, WEC(Γ, b) ⊂ WEC(Λ, b̄). Similarly, it can be
shown that that WEC(Λ, b̄) is sufficient for EC, Γ, and b and hence, WEC(Λ, b̄) ⊂ WEC(Γ, b).
Therefore, WEC(Γ, b) = WEC(Λ, b̄).

Let W be the essential collection for EC, Γ, and b. Let Ḡ be an extension of GW and let
b̄ be a strategy in Ḡ that coincides with b in W . Then, the next result shows that, to check
if there is an equilibrium b̂ of Ḡ that is realization equivalent to b̄, then it suffices to check if
b ∈ EC(GW ).

Corollary 4. Fix an equilibrium concept EC. Let G(W ) be the set of the extensions of a reduced
game GW = (ΓW , hW ). Let b ∈ B(ΓW ) be such that WEC(ΓW , b) = W . Let Ḡ = (Λ, h) ∈ G(W )
and b̄ ∈ B(Λ) be such that b = b̄W . Then,

i) WEC(Λ, b̄) = W .

ii) If b ∈ EC(GW ), then there is b̂ ∈ EC(Ḡ) such that b̂W = b̄W = b.

iii) If b /∈ EC(GW ), then there is no b̂ ∈ EC(Ḡ) such that b̂W = b̄W = b.

Proof. Statement i) is immediate from Proposition 7; ii) and iii) follow from Proposition 6.

We describe now two applications of Corollary 4.

5.1.1 Structural robustness

We borrow the name of structural robustness from Kalai (2005, 2006), where similar changes
in the underlying games are considered and used to study the robustness of Nash equilibria in
large games.

Our approach allows us to study how robust the different equilibrium concepts are with
respect to structural changes in the game. We already provided an illustration of this fact
when comparing SE and WPBE in the licensing game (Section 2). Let EC be an equilibrium
concept, G = (Γ, h) an extensive game, and b ∈ EC(G). Suppose now that the game G is
modified, by some changes in Γ or by some changes in h, and suppose that none of this changes
affects the path of b. Let Ḡ be the modified game. Then, it is natural to ask whether the
outcome of b is an equilibrium outcome for EC in Ḡ or not; essential collections are very useful
here. Suppose that we have characterized the essential collections for EC. Then, if the changes
in G affected neither WEC(Γ, b) nor the payoffs in its terminal nodes, b is indeed an equilibrium
outcome for EC in Ḡ. To see this, just note that in the latter case, Ḡ ∈ G(WEC(Γ, b)), so
Corollary 4 implies the desired result.

Note that the structural changes in the game can be of very different nature since they can:
affect payoffs; change the sets of strategies; change the information available to the players;
account for addition, elimination, or merging of players; enlarge or reduce the game; etc. As far
as this changes do not affect the essential collection associated to a given equilibrium profile b,
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its outcome will be an equilibrium outcome also in the modified game; on the other hand, if the
changes affected the essential collection, whether the outcome of b is remains an equilibrium
outcome or not will depend on the specific payoffs of the games at hand.

Therefore, if the essential collections associated with an equilibrium concept EC1 are always
smaller than the ones associated with EC2, we have that EC1 is more robust to structural
changes than it is EC2. The latter statement, combined with the inclusion relations obtained
for the essential collections characterized in sections 3 and 4 implies that SR and PE are the
less robust equilibrium concepts followed, in this order, by WPBE, SE, SPE, and SR (the
licensing exemplified this fact for SE and WPBE).

Remark 3. It is worth to provide one further clarification for what we mean when we say,
for instance, that SE is structurally more robust than WPBE. Fix a game G and a strategy
profile b. Suppose that b is a SE. The discussion above says that after any change in the game
that does not affect the essential collection for SE, Γ, and b, the outcome of b remains a SE
outcome in the modified game; no further calculation is needed, regardless of the actual payoffs
of the modified game. On the other hand, suppose that b is just a WPBE but not a SE, then,
since the latter changes might have affected the corresponding essential collection for WPBE
(which is not smaller than the one for SE), b might not be a WPBE outcome anymore. Yet,
our statement is mute about changes inside the essential collections. Indeed, since SE is more
demanding than WPBE, it is natural to think that SE will be less robust to changes inside the
essential collection.

5.1.2 Partially-specified games

As also discussed in Kalai (2005, 2006), the idea of structural robustness is very related to the
possibility of dealing with partially-specified games. Let Gp = (Γ, h) be a partially-specified
game, i.e., it lacks of a full description of Γ or some payoffs are unknown. Can we still
say something about the equilibria of this game? Maybe. Suppose that there is a (possibly
partially-specified) strategy b ∈ B(Γ) such that WEC(Γ, b) can be characterized and the corre-
sponding reduced game is completely specified. Then, if bWEC(Γ,b) ∈ EC(Gp

WEC(Γ,b)), we know

that, for whatever specification of the unknown elements of Gp, there is b̂ ∈ EC(Gp) that is
realization equivalent to b, i.e., the outcome of b will be an equilibrium outcome of any game
satisfying the partial specifications of Gp.

A situation as the one described above may arise even in very simple settings. We have
already mentioned one such situation when discussing the licensing game in Section 2. We
present now an even simpler example.

Example 1. Consider the partially-specified game G = (Γ, h) in Figure 6 below. We do not
know how the game continues after x. It might be that x is a terminal node; it might be that we
know the subgame beginning there, but that it is too complicated for its sequential equilibria
to be found; and it might also be that we do not know anything at all about how the game
follows once once x is reached. In any case, W = {u, v, z1, z2, z3} is the essential collection
for SE, any such Γ and any strategy in which players 1 and 2 play D1 and D2 at their initial
information sets. Hence, since b = (D1, D2) ∈ SE(GW ), there is a sequential equilibrium of G
in which D1 and D2 are played, leading to the payoff vector (1, 1). 3
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· · ·
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U2

D2

D1

D2

Figure 6: A partially-specified game

5.2 Virtual equilibrium concepts

All the analysis in the previous sections has been carried out in a framework in which the
existence of the discussed equilibrium concepts was guaranteed. In this section we also allow
for games with non-compact sets of strategies, discontinuous payoff functions, and also games
in which only pure strategies are possible. Thus, there can be games without equilibria. Es-
sentially, all the analysis and results in the previous sections carry over to these new settings
although some care is needed.17

If a given equilibrium concept EC has been essentialized, then the virtual version of EC,
VEC, can be defined as follows. Given G = (Γ, h),

VEC(G) := {b ∈ B(Γ) : bWEC(Γ,b) ∈ EC(GWEC(Γ,b))}.

Clearly, for each game G, EC(G) ⊂ VEC(G) and, by Proposition 6, if EC(G) 6= ∅, then, for

each b ∈ VEC(G), there is b̂ ∈ EC(G) realization equivalent to b.

Remark 4. The latter observation is the reason for the word “virtual”. As far as the original
game has some equilibrium, then the sets of equilibrium outcomes and virtual equilibrium
outcomes coincide. Yet, there can be games in which the set of virtual equilibria is nonempty
whereas there is no non-virtual equilibrium.

Remark 5. Virtual equilibria are very similar to the trimmed equilibria introduced in Groenert
(2007). Yet, the analysis there only accounts for the trimmed versions of subgame perfect
equilibrium and weak perfect equilibrium. At the same time, there are some differences in the
two approaches. Roughly speaking, for each strategy profile b, we identify those information
sets that are irrelevant to check if (for whatever beliefs) b ∈ WPBE, i.e., those information
sets outside

⋃

µ∈Mwc(b) W b,µ; on the other hand, in Groenert (2007), for each assessment (b, µ)

with µ ∈ Mwc(b), the author identifies those information sets that are irrelevant to check if
(b, µ) ∈ WPBE, i.e., those outside W b,µ.18 Hence, the final equilibrium concepts, although
stemming from the same ideas are slightly different.19 We think that none of the two approaches
outweighs the other; rather, they may be seen as complementary.

17For instance, in the proof of Proposition 5, it has to be ensured that SE(Ḡ) 6= ∅ implies that also the games
Ḡ(−W b

SE, bn) have some sequential equilibrium.
18Also, the analysis in Groenert (2007) just focuses on the definition of trimmed equilibria and there is no

closedness requirement involved.
19The discussion above suggests that a virtual WPBE will always be a trimmed WPBE but there can be

trimmed WPBE that are not virtual WPBE.
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The following result says that the virtual versions of NE, SR, and PE coincide with the
non-virtual versions. It is an immediate consequence of the corresponding characterizations of
their essential collections.

Corollary 5. For each game form Γ and each game G ∈ G(Γ), NE(G) = VNE(G), SR(G) =
VSR(G), and PE(G) = VPE(G).

Nonetheless, for other equilibrium concepts, the virtual version can make a difference.
Therefore, the virtual equilibrium concepts can lead to reasonable equilibrium behavior in
settings where the classic equilibrium concepts fail to exist. We show this by elaborating on
the situation we discussed in the motivation section.

Example 2. Consider the extensive game depicted in Figure 7. Suppose we restrict atten-
tion to pure strategies. Fix k, l ∈ {1, 2} and let b :=

(

(D1, a
k
1), (D2, a

l
2)

)

. Note that in
the subgame that begins after playing (U1, U2), there is no information set that belongs to
WSPE(Γ, b); the reduced game GWSPE(Γ,b) is depicted in Figure 7(b) (with M = MG). Clearly,
bWSPE(Γ,b) ∈ SPE(GWSPE(Γ,b)) and hence, b ∈ V SPE(G). However, if we restrict to pure
strategies, SPE(G) = ∅. We consider that, in the spirit of SPE, b is a sensible equilibrium of
game G in the following sense. The players cannot use backwards induction to “solve” game G
because the proper subgame does not have any NE. Still, suppose that the players are keen on
backwards induction and insist on assigning payoffs at that subgame and then go backwards
in the tree. Then, no matter what payoffs they assign to that subgame, they would find that
b is a “solution” of the game. 3

1

2

1

2

(1,1)

(1,0)

(0,1)

(1,-1)

(-1,1)

(-1,1)

(1,-1)

U1

D1

U2

D2

U2

D2

a1
1

a2
1

a1
2

a2
2

a1
2

a2
2

(a) The game G.

1

2

(1,1)

(1,0)

(0,1)

(2,2)

U1

U2

U2

D2

D1

D2

(b) The game GWSPE(Γ,b).

Figure 7: A game without SPE, but with VSPE.

In the example above, the game G did not have any SPE because we restricted attention to
pure strategies. As we already illustrated in Section 2 with the licensing game, there may be
other sources for the emptiness of the set of equilibria such as the discontinuity of the payoff
functions (this was the case in the licensing game) or unboundedness of the payoffs. Moreover,
the second version of the licensing game, LGm, is a game with some VSE, but for which SE is
not even defined.
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Finally, we refer the reader to Garćıa-Jurado and González-Dı́az (2006) for an application
of the virtual subgame perfect equilibrium to derive a folk theorem in a repeated games setting
in which the set of subgame perfect equilibria may be empty.
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A The closedness under �

As we see in the proofs in Sections 3 and 4, although the intuitions behind the main results are
quite simple, the proofs are somewhat cumbersome. In this respect, working with collections
of informations sets that are closed under the precedence relation has proved to facilitate
the analysis; not only for the results, but also for the applications discussed in Section 5.
Nonetheless, as we argue below, even if we set aside the tractability issues, there are other
reasons to require closedness in the definitions of essential collections.

In Example 3, we show that there can be reasonable sufficient collections that are not closed
and that are strictly contained in the corresponding essential collections. Hence, the closedness
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assumption is not innocuous. In Example 4, we present a different situation in which unrea-
sonable sufficient collections appear when the closedness requirement is removed; unreasonable
in the sense that a (non-closed) sufficient collection might not contain informations sets that
seem relevant for the equilibrium concept, game form, and strategy profile at hand.

Example 3. Consider a game form Γ that starts as depicted in Figure 8 and consider any
strategy profile b in which player 1 plays D at r(Γ) and player 2 plays u in his first (and
possibly unique) information set. Then, by Proposition 1, WNE(Γ, b) consists of the closure
of the information sets that can be reached after a unilateral deviation from b. It is easy to
check that, although x cannot be reached by unilateral deviations, x belongs to WNE(Γ, b).
Nonetheless, it seems that, given any game in G(Γ), x is not relevant to know if there is a NE
that is realization equivalent to b. Therefore, it is arguable whether the essential collection for
NE, Γ, and b should contain x or not. Note that this example cannot be trivially adapted, for
instance, to SE, since the beliefs of player 4 might depend on the behavior at x and hence,
adding x to an essential collection might be natural there. 3

1
2

x

3

3
4

. . .

. . .

. . .

. . .

. . .

. . .

U
d

d

D

u

u

Figure 8: The closedness requirement is
not inocuous.

1

2

y

z1

z2

z3

U

u

d

D

Figure 9: The closedness requirement
can rule out unnatural collections.

Example 4. Consider now the game form Γ in Figure 9 and the strategy profile b = (D, d).
Clearly, WSPE(b, Γ) = Γ, which is quite natural. On the other hand, it is easy to check that
W = {r(Γ), z1, z2, z3} is a sufficient collection for SPE, Γ, and b. That is, node y is not needed,
which is awkward. Differently from the situation in Example 3, the same analysis goes through
for all the equilibrium concepts discussed in this paper. It is worth noting that the collection
W is not strongly sufficient. Hence, we might strengthen sufficiency to strong sufficiency to
rule out the above kind of collections. Yet, even if no other pathological examples appear when
studying strong sufficiency without requiring closedness under �, we know by Example 5 that
strong sufficiency is very demanding for equilibrium concepts such as SE. 3

B The licensing game

The example we present below does not pretend to be a real application of our analysis. It is
an ad-hoc strategic situation that we use to illustrate the results in this paper and how they
might be useful for game theoretical analysis. We have tried to keep it as simple as possible
but, at the same time, rich enough to illustrate as many things as possible.

A government official (GO) has decided to grant a new telecommunications license and is
considering to design an auction to allocate it; moreover, the control of GO over the overall
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process is limited by the present legislation and its options reduce to the ones we present
below.20 A local firm (LF) is interested in the auction and has valuation v > 0 for the license.
A foreign firm (FF) is undecided among three choices: i) not entering the market, ii) enter with
a high bid, and iii) enter with a low bid. At the same time, the government official is unsure
about whether the presence of a foreign firm can be good for the interests of the country and
has to decide whether to ban the entrance of the foreign firm or not. If FF does not enter the
market, whatever the reason, the license goes to the local firm at price v; otherwise, there is
an auction in which each participant has to pay an entry fee c, with 0 < c ≪ v. Moreover,
only bides above r > 0 are allowed (r ≪ v). The game runs as follows:

Stage 1: FF decides whether to enter or not in the market and whether to do it with a high
bid ᾱ = v or with a low bid r < α ≪ v − c (provided that its entrance is not banned by
GO). FF’s valuation of the license is slightly above v + c, say v + 2c.

Stage 1: Simultaneously and independently, GO decides whether to ban the entry of FF or
not and, moreover, decides whether the auction will be simultaneous or sequential. In
the latter case, LF would be informed about the bid of FF before making its own bid.

Stage 2: If after stage 1 FF is not in the market, then the license goes to LF at a price v. If
FF is in the market, LF is informed about the action of GO and submits a bid. LF pays
the entry cost only if his bid is positive (i.e., a 0 bid is interpreted as not entering the
auction).

End of the game: The license is allocated and the players pay their corresponding costs to
GO. If both firms submit the same bid, the license is granted to each firm with equal
probability. If the license goes to LF, then GO gets some extra utility given by e > 2c.

Moreover, we assume that the bids belong to a discrete set: there is a small number ε > 0 such
that the only bids accepted are those of the form kε, with k ∈ {0, 1, . . .} (r is assumed to be a
valid bid). We denote this game by LGd = (Γd, hd), where d stands for “discrete bids”. The
extensive form associated with the game is depicted in Figure 10(a) (FF moves at r(Γ), GO
moves at u2, and LF moves at y1, u3, and y4).

We base our analysis in four profiles: the strategy profile b̄1 in which FF plays “ent&high”
with probability 0.5 and “no-entry” with probability 0.5; GO plays “ban” with probability 1;
and LF bids 0 at y1 and α+ε at u3 and y4. In this profile FF is best replying and, since e > 2c,
GO is also best replying. LF is best replying at y1 and y4; and, if his beliefs at u3 put high
enough probability on y3, then he is also best replying at u3. Hence, since u3 /∈ π(b̄1), the latter
beliefs are compatible with the use Bayes rule in the path and therefore, b̄1 ∈ WPBE(LGd).
Yet, the unique beliefs of LF at u3 that are consistent (in the sense required by SE) put
probability 1 on y2. Hence, b̄1 /∈ SE(LGd). The second strategy profile is b̄2, which only differs
from b̄1 in the choice of LF at u3, which is now bid 0. Clearly, if the beliefs of LF at u3 put
high enough probability on y2, then he is best replying at u3 when playing according to b̄2.
Hence, b̄2 ∈ SE(LGd) and also b̄2 ∈ WPBE(LGd). Finally, b1 and b2 are defined from b̄1 and
b̄2, respectively, by changing the bid of LF at y4 to 0. Since bid 0 at y4 is never sequentially
rational, these new profiles are neither SE nor WPBE (but they still are NE).

20This game is just an example to illustrate the main results in this paper, i.e., we do not pretend to provide
a realistic model for the auctioning of telecommunication licenses.
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(a) Γd, the game form of LGd.
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(b) Γm, the game form of LGm

Figure 10: The two licensing games.

Essential collections for WPBE and SE. Following the informal characterization above,
the essential collection for WPBE, Γd, and b1, namely WWPBE, contains all the information
sets of Γd with the exception of y4 and the terminal nodes after y4. To see why, just note that,
since u2 is in the path of b, any beliefs computed with Bayes rule in the path have to assign
probability 0 at x2; hence, according to any such beliefs, no deviation or series of deviations
from b1 reach y4 or the terminal nodes after y4 with positive probability (a simultaneous
deviation by FF and GO would be needed). All the other information sets can be reached with
(series) of unilateral deviations; for instance, to reach the terminal nodes that come after a bid
β at u3, consider beliefs that put probability 0.5 on y2 and 0.5 on y3 and consider the series of
two deviations in which GO deviates to “sim” and, after observing this, LF deviates himself to
bid β. On the other hand, the essential collection for SE, Γd, and b1, namely WSE, coincides
with WWPBE except for the fact it does not contain any of the terminal nodes that come after
y3. To see this, just recall that any beliefs consistent with b1 will put probability 0 on y3

and hence, the terminal nodes that come after y3 are never reached with positive probability
(according to any consistent beliefs) after any series of deviations from b1. In particular, note
that WSE ⊂ WWPBE. It can be easily seen that the essential collections for b2, b̄1, and b̄2 are
the same ones, WWPBE for WPBE and WSE for SE. Now we elaborate on what we can learn
from essential collections.

The reduced game. In Section 5, given a game G, we associate a reduced game GW

with each (closed) collection of information sets W ; the basic idea is to remove from G all the
information sets that are not in W in such a way that what is left still forms a game. The
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reduced game LGd
WSE

would be defined as follows. Let M ≫ v. We need to take care of y4

and its successors and also of the successors of y3. First, remove all the terminal nodes that
come after y4 and assign payoff (M, M, M) to y4. We would like to do the same with y3, but
it belongs to u3 and hence, to have a well defined reduced game, the same choices must be
available to LF at y2 and y3. In this case, just replace all the payoffs of the terminal nodes
that come after y3 with the payoff (M, M, M). Then, in game LGd

WSE
we do not need to worry

about the choices of LF at y4 (which is now a terminal node) and, moreover, conditional on y3

being reached, LF is indifferent between all his choices there. Given a strategy profile b, recall
that bW denotes the restriction of b to W , which is a strategy in the reduced game.

Given an equilibrium concept, a game, and a strategy profile, we can define a reduced
game that helps to check if the outcome of the strategy profile is an equilibrium outcome.
More specifically, suppose that we are given the strategy profile b2 and we want to know if
its outcome is a SE outcome of LGd. Now, since WSE is a sufficient collection (for SE, Γd,
and b2) and b2

WSE
is a SE of the reduced game, (by Proposition 6) we have that, although

b2 /∈ SE(LGd), its outcome is a SE outcome of LGd.

Structural robustness. The main application of the reduced game may be to the study
of the structural robustness of the different equilibrium concepts. We already know that b̄1 ∈
WPBE(LGd) and b̄2 ∈ SE(LGd) but, how robust are these equilibria to structural changes in
the game? Suppose that, to reduce the advantage of LF and encourage the participation of
FF, GO is considering the following changes in the way the license is granted, i.e., changes in
the game LGd: C1) if “ent&low” and “seq” are played and FF looses the auction, then FF is
given another chance to bid; C2) whenever “ent&low” has been played, FF is given another
chance to bid if he looses the auction; C3) whenever FF looses the auction, FF is given another
chance to bid. In this setting (by Corollary 4) each equilibrium is robust to changes outside its
essential collection; so the equilibrium concepts with the smaller essential collections will be,
to some extent, more robust. More precisely, even if C1) takes place, since this change occurs
after y4 (which does not belong to any of the essential collections), the outcome b̄1 would be
a WPBE outcome of the modified game and the outcome of b̄2 a SE outcome, regardless of
the specific details of C1). Now, since the changes implied by C2) would come after y3 and
y4, b̄2 would also be robust to C2), but one should check again whether the outcome of b̄1 is
a WPBE outcome of the reduced game, i.e., SE is more robust to change C2) than WPBE.
The latter feature holds in general, i.e., since the essential collections associated with SE are
smaller than the ones associated with WPBE; there are more changes after which there is
nothing to reassess for SE than for WPBE (there are more changes that do not affect the
essential collection of SE than the one for WPBE). Finally, change C3) affects both b̄1 and b̄2

and whether their outcomes remain equilibrium outcomes or not in the modified game would
depend on the specific changes and our results are mute here. Indeed, in this last case, when
the changes take place inside the essential collection, it is natural to expect that WPBE will
be more robust than SE (since it is less demanding); actually, the outcome b̄2 might not be a
SE outcome in the modified game and still be a WPBE outcome. Here we have just discussed
three very simple modifications of the game, but the results hold for whatever changes are
made outside the essential collections: appearance of new players, changes on the information
partitions, changes in the payoffs, addition of subgames (no matter how big),. . .

Partial-specifications of the game. This issue is very related to the one above. The
idea is that essential collections may help to give some information about the equilibrium
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outcomes of games that are not completely specified. Suppose that, in the licensing game, we
have no idea about how the game continues once y4 is reached. Even in this case we know (by
Corollary 4) that, no matter how the game is defined from y4 onwards, the outcome of b̄2 is
going to be a SE outcome. Hence, essential collections help to identify what misspecifications
in the game are irrelevant for different strategies and equilibrium concepts.

Virtual equilibrium concepts. Consider the following modification of the game LGd.
GO still has the same three actions but now, if he chooses “seq” after FF has played “ent&low”,
then LF can submit any real number above r as a bid (or 0); in the other cases the auctions
are still over a discrete set. We denote this licensing game by LGm, where m stands for mixed;
see Figure 10(b). Suppose that we want to study the WPBE of LGm. Then, since there is no
best reply for LF at node y4 (because of the discontinuity in the payoffs), WPBE(LGm) = ∅.
However, we consider that b̄1 is still as sensible in the game LGm as it was in game LGd; no
matter the payoff that LF may get after y4, that will not affect the sequential rationality of
b̄1 at any other information set (provided that the beliefs are computed using Bayes rule in
the path of b̄1). This motivates the definition of virtual equilibrium concepts. We say that a
strategy profile b is a virtual WPBE if it is a WPBE of the reduced game associated with its
essential collection (for WPBE and the game form at hand); and the virtual version of any
other equilibrium concept is defined analogously. Now, b̄1 is a virtual WPBE of game LGm.
Note that also b1 would be a virtual WPBE, despite of the irrational behavior at y4. This is
because virtual equilibrium concepts only impose restrictions in the behavior inside the essential
collection. Given a virtual equilibrium, we can always replace the non-equilibrium behavior
outside the essential collection by equilibrium behavior (if this exists) to get an equilibrium in
the classic sense. Then, (by Proposition 6) if the set of WPBE of the original game is nonempty,
the set of WPBE outcomes and virtual WPBE outcomes coincide (which justifies the name
virtual). Furthermore, we can even have virtual equilibria in games in which the non-virtual
counterpart is not defined. For instance, SE cannot be defined for games with uncountably
many actions and hence, SE is not defined for game LGm and, despite of this, since the sets of
actions in the reduced game LGd

WSE
are again countable, we get that b̄2 is a virtual SE (i.e.,

the nodes with uncountably many actions are in parts of the game that are irrelevant for b̄2).

C Strong sufficiency and sequential equilibrium

The example below shows that fSE is not regular and that W b
SE needs not be a strongly

sufficient collection for sequential equilibrium.

Example 5. Consider the game G ∈ G(Γ) in Figure 11. Given b = (D, D, (D, D)), (b, µ) is a
consistent assessment if and only if µ(a) = µ(b) = 0, µ(c) = 1, µ(x) = µ(x̄), and µ(y) = µ(ȳ).
Now, W b

SE is the collection that consists of removing the upper information set of player 3
and the four terminal nodes that come after it. More formally, W b

SE = U(Γ)\W , where
W := {v ∈ U(Γ) : ux � v}. Let µ ∈ Mcons(b) be such that µ(x) = µ(x̄) = 1. So defined,
(b, µ) ∈ SE(G). Now, take the game Ḡ ∈ G(Γ) depicted in the left part of Figure 12. Take
b̄ = b. Let µ̄ ∈ Mcons(b) = Mcons(b̄) be such that µ̄(x) = µ̄(x̄) = 0. So defined, (b̄, µ̄) ∈ SE(Ḡ).
Consider now the assessment (b⊗, µ⊗). Since b⊗ = b, Mcons(b⊗) = Mcons(b). Therefore, since
µ⊗(x) = 0 6= 1 = µ⊗(x̄), µ⊗ is not consistent with b⊗. Hence, (b⊗, µ⊗) /∈ SE(G⊗). Since
µ ∈ Mcons(b) = fSE(Γ, b), µ̄ ∈ fSE(Γ, b̄), and µ⊗ /∈ fSE(Γ, b⊗), we have shown that fSE is not
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Figure 11: W b
SE is not strongly sufficient for sequential equilibrium. The game G.
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b̄ = b

1

2
3

3

x

y

x̄

ȳ
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Figure 12: W b
SE is not strongly sufficient for sequential equilibrium. The games Ḡ and G⊗.
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regular. We show now that W b
SE is not strongly sufficient for SE, Γ, and b by showing that

b⊗ /∈ SE(G⊗). Suppose, on the contrary, that (b⊗, µ̂) ∈ SE(G⊗). Since player 3 is playing
D at ux and (b⊗, µ̂) is sequentially rational at ux, µ̂(y) ≥ 3

5 . Since (b⊗, µ̂) to be sequentially
rational at ux̄, µ̂(x̄) ≥ 3

5 and hence, µ̄(ȳ) ≤ 2
5 . But this is not possible since, µ̂ ∈ Mcons(b⊗)

implies that µ̄(y) = µ̄(ȳ). 3
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